year | square feet | kWh |
---|---|---|
2007 | 14,214,216 | 2,141,705 |
2008 | 14,359,041 | 2,108,088 |
2009 | 14,752,886 | 2,150,841 |
2010 | 15,341,886 | 2,211,414 |
2011 | 15,573,100 | 2,187,164 |
2012 | 15,740,742 | 2,057,364 |
year <- c(2007, 2008, 2009, 2010, 2011, 2012) sqfeet <- c(14214216, 14359041, 14752886, 15341886, 15573100, 15740742) kwh <- c(2141705, 2108088, 2150841, 2211414, 2187164, 2057364) kwhpersqft <- kwh/sqfeet plot(year,kwhpersqft)
m <- matrix(1:18, nrow=6,ncol=3)
Install the measurement package and use one of its functions to do the following conversions:
library(measurement) conv_unit(100,'F','C') conv_unit(100,'m','ft')
# Create a new column with the temperature in Celsius
library(measurement)
url <- "http://people.terry.uga.edu/rwatson/data/centralparktemps.txt"
t <- read.table(url, header=T, sep=',')
# compute Celsius
t$Ctemp = round(conv_unit(t$temperature,'F','C'),1)
The saved file is available.
library(dplyr)
library(lubridate)
library(DBI)
conn <- dbConnect(RMySQL::MySQL(), "richardtwatson.com", dbname="Weather", user="db2", password="student")
# Query the database and create file t for use with R
t <- dbGetQuery(conn,"select * from record;")
t$year <- year(t$timestamp)
t$month <- month(t$timestamp)
t$hour <- hour(t$timestamp)
head(t) # Compute the average temperature at 5pm in August t %>% filter(hour==17 & month==8) %>% summarize(mean=mean(airTemp)) # Compute the maximum temperature for each day in August t$day <- day(t$timestamp)
t %>% filter(month==8) %>% group_by(day) %>% summarize(max=max(airTemp))
This page is part of the promotional and support material for Data Management (open edition) by Richard T. Watson |